2023年 124. In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Hao Wang, Weidong Xu, Qi Wei, Si Peng, Yuequn Shang, Xianyuan Jiang, Danni Yu, Kai Wang, Ruihua Pu, Chenxi Zhao, Zihao Zang, Hansheng Li, Yile Zhang, Ting Pan, Zijian Peng, Xiaoqin Shen, Shengjie Ling, Weimin Liu, Feng Gao*, Zhijun Ning*, Light: Science & Applications, 2023, 12, 1, 62. 123. Symmetry-Broken 2D Lead–Tin Mixed Chiral Perovskite for High Asymmetry Factor Circularly Polarized Light Detection. Bing Yao, Qi Wei, Yunqing Yang, Wenjia Zhou, Xianyuan Jiang, Hao Wang, Mingyu Ma, Danni Yu, Yingguo Yang, Zhijun Ning*, Nano Letters, 2023, 23, 5, 1938–1945. 122. Surface Energy Regulated Growth of α‐phase Cs0.03FA0.97PbI3 for Highly Efficient and Stable Inverted Perovskite Solar Cells. Ting Pan, Wei Zhou, Qi Wei, Zijian Peng, Hao Wang, Xianyuan Jiang, Zihao Zang, Hansheng Li, Danni Yu, Qilin Zhou, Mengling Pan, Wenjia Zhou, Zhijun Ning*, Advanced Materials, 2023, doi.org/10.1002/adma.202208522. 121. Neglected Acidity Pitfall: Boric Acid-Anchoring Hole-Selective Contact for Perovskite Solar Cells. Huanxin Guo, Cong Liu, Honglong Hu, Shuo Zhang, Xiaoyu Ji, Xiao-Ming Cao, Zhijun Ning, Wei-Hong Zhu, He Tian, Yongzhen Wu*, National Science Review, 2023, DOI: 10.1093/nsr/nwad057. 120. Tutorial: Lead sulfide colloidal quantum dot infrared photodetector. Haobo Wu, Zhijun Ning*, Journal of Applied Physics, 2023, 133, 4, 041101. 119. From tetragonal to cubic: perovskite phase structure evolution for high-performance solar cells. Qi Wei, Hao Liang, Yuki Haruta, Makhsud Saidaminov, Qixi Mi, Michael Saliba, Guanglei Cui, Zhijun Ning*, Science bulletin, 2023, DOI: 10.1016/j.scib.2023.01.008. 118. High-member low-dimensional Sn-based perovskite solar cells. Hansheng Li, Zihao Zang, Qi Wei, Xianyuan Jiang, Mingyu Ma, Zengshan Xing, Jingtian Wang, Danni Yu, Fei Wang, Wenjia Zhou, Kam Sing Wong, Philip CY Chow, Yuanyuan Zhou*, Zhijun Ning*, Science China Chemistry, 2023, 66, 459–465.
2022年 117. Mean-field approach for Anderson-type off-diagonal disorder. Qi Wei, Jianxiong Zhai, Zhijun Ning, Youqi Ke*, Physical Review B, 2022, 106, 21, 214205. 116. Recent progress in perovskite solar cells: material science. Jiang-Yang Shao, Dongmei Li, Jiangjian Shi, Chuang Ma, Yousheng Wang, Xiaomin Liu, Xianyuan Jiang, Mengmeng Hao, Luozheng Zhang, Chang Liu, Yiting Jiang, Zhenhan Wang, Yu-Wu Zhong*, Shengzhong Frank Liu*, Yaohua Mai*, Yongsheng Liu*, Yixin Zhao*, Zhijun Ning*, Lianzhou Wang*, Baomin Xu*, Lei Meng*, Zuqiang Bian*, Ziyi Ge*, Xiaowei Zhan*, Jingbi You*, Yongfang Li*, Qingbo Meng*, Science China Chemistry, 2022, 66, 10–64. 115. Difluorine‐Substituted Molecule‐Based Low‐Dimensional Structure for Highly Stable Tin Perovskite Solar Cells. Mingyuan Sun, Mingyu Ma, Yang Guo, Songyang Yuan, Hui Xiong, Ziyu Tan, Wenzhe Li*, Jiandong Fan*, Zhijun Ning*, Solar RRL, 2022, 6, 11, 2200672. 114. Strategies for enhancing the stability of metal halide perovskite towards robust solar cells. Wei Zhou, Ting Pan, Zhijun Ning*, Science China Materials, 2022, 65, 3190–3201. 113. Focused ion beam preparation of halide perovskite microscopy specimens: evaluation of the beam induced damage. Yuan Lu, Hao Wang, Yi Chen, Xiangchen Hu, Letian Dou, Qixi Mi, Zhijun Ning, Yi Yu*, Journal of Physics: Condensed Matter, 2022, 34, 41, 414004. 112. Ionic Liquid‐Tuned Crystallization for Stable and Efficient Perovskite Solar Cells. Junhui Ran, Hao Wang, Wen Deng, Haipeng Xie, Yongli Gao, Yongbo Yuan, Yingguo Yang, Zhijun Ning, Bin Yang*, Solar RRL, 2022, 6, 7, 2200176. 111. Smooth and Compact FASnI3 Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency.Zihao Zhu, Xianyuan Jiang, Danni Yu, Na Yu, Zhijun Ning, Qixi Mi*, ACS Energy Letters, 2022,7, 6, 2079-2083. 110. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Hao Chen, Sam Teale, Bin Chen, Yi Hou, Luke Grater, Tong Zhu, Koen Bertens, So Min Park, Harindi R. Atapattu, Yajun Gao, Mingyang Wei, Andrew K. Johnston, Qinlin Zhou, Kaimin Xu, Danni Yu, Congcong Han, Teng Cui, Eui Hyuk Jung, Chun Zhou, Wenjia Zhou, Andrew H. Proppe, Sjoerd Hoogland, Frederic Laquai, Tobin Filleter, Kenneth R. Graham, Zhijun Ning*, Edward H. Sargent*, Nature Photonics, 2022, 16, 5, 352-358. 109. Quasi-2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Danni Yu, Qi Wei, Hansheng Li, Junhan Xie, Xianyuan Jiang, Ting Pan, Hao Wang, Mengling Pan, Wenjia Zhou, Weimin Liu, Philip C. Y. Chow, Zhijun Ning*, Angewandte Chemie International Edition, 2022, 61, 20, e202202346. 108. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors. Kaimin Xu, Liang Ke, Hongbin Dou, Rui Xu, Wenjia Zhou, Qi Wei, Xinzuo Sun, Hao Wang, Haobo Wu, Lin Li*, Jiamin Xue, Baile Chen, Tsu-Chien Weng, Li Zheng, Yuehui Yu, Zhijun Ning*, ACS Applied Materials and Interfaces, 2022, 14, 12, 14783-4790. 107. The 3D-structure-mediated growth of zero-dimensional Cs4SnX6 noncrystals. Kaimin Xu, Qi Wei, Hao Wang, Bing Yao, Wenjia Zhou, Rong Gao, Hao Chen, Hansheng Li, Jingtian Wang, Zhijun Ning*, Nanoscale, 2022, 14, 2248-2255. 106. Chances and challenges for tin perovskites. Qi Wei, Hansheng Li, Zhijun Ning*, Trends in Chemistry, 2022, 4, 1, 1-4.
2021年 105. One-Step Synthesis of SnI2·(DMSO)x Adducts for High-Performance Tin Perovskite Solar Cells. Xianyuan Jiang, Hansheng Li, Qilin Zhou, Qi Wei, Mingyang Wei, Luozhen Jiang, Zhen Wang, Zijian Peng, Fei Wang, Zihao Zang, Kaimin Xu, Yi Hou, Sam Teale, Wenjia Zhou, Rui Si, Xingyu Gao, Edward H Sargent, Zhijun Ning*, Journal of the American Chemical Society, 2021, 143, 29, 10970-10976. 104. Low-Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templared Growth. Hansheng Li, Xianyuan Jiang, Qi Wei, Zihao Zang, Mingyu Ma, Fei Wang, Wenjia Zhou, and Zhijun Ning*, Angewandte Chemie International Edition, 2021, 60, 16330-16336. 103. Silicon: quantum dot photovoltage triodes. Wen Zhou, Li Zheng*, Zhijun Ning*, Xinhong Cheng, Fang Wang, Kaimin Xu, Rui Xu, Zhongyu Liu, Man Luo, Weida Hu, Huijun Guo, Wenjia Zhou & Yuehui Yu, Nature Communications, 2021, 12, 6696. 102. Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Tchnology, Xianyuan Jiang, Zihao Zang, Yuanyuan Zhou, Hansheng Li, Qi Wei, Zhijun Ning*, Accounts of Materials Research, 2021, 2(4), 210-219. 101. Dehydration-Reaction-Based Low-Temperature Synthesis of Amorphous SnOx for High-Performance Perovskite Solar Cells. Yuequn Shang, Tingting Zhang, Danni Yu, Zijian Peng, Wenjia Zhou, Dongguang Yin*, and Zhijun Ning*, ACS Applied Materials and Interfaces, 2021. 13. 40. 47603-47609. 100. Chiral Perovskite Spin-Optoelectronics and Spintronics: Toward Judicious Design and Application. Qi Wei, Zhijun Ning*, ACS Materials Letters, 2021, 3, 9, 1266-1275. 99. Giant Spin Splitting in Chiral Perovskites Based on Local Electrical Field Engineering. Qi Wei, Qingyun Zhang, Longjun Xiang, Shihao Zhang, Jianpeng Liu, Xiaoyu Yang, Youqi Ke*, and Zhijun Ning*, The Journal of Physical Chemistry Letters, 2021, 12, 28, 6492-6498. 98. Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells. Hao Chen, Zijian Peng, Kaimin Xu, Danni Yu, Congcong Han, Hansheng Li & Zhijun Ning*, Science China Materials, 2021, 64(3), 537-546. 97. The Main Progress of Perovskite Solar Cells in 2020-2021. Tianhao Wu, Zhenzhen Qin, Yanbo Wang, Yongzhen Wu, Wei Chen, Shufang Zhang, Molang Cai, Songyuan Dai, Jing Zhang, Jian Liu, Zhongmin Zhou, Xiao Liu, Hiroshi Segawa, Hairen Tan, Qunwei Tang, Junfeng Fang, Yaowen Li, Liming Ding, Zhijun Ning, Yabing Qi, Yiqiang Zhang & Liyuan Han*, Nano-Micro Letters, 2021, 13: 152-152. 96. Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Bin Chen, Hao Chen, Yi Hou, Jian Xu, Sam Teale, Koen Bertens, Haijie Chen, Andrew Proppe, Qilin Zhou, Danni Yu, Kaimin Xu, Maral Vafaie, Yuan Liu, Yitong Dong, Eui Hyuk Jung, Chao Zheng, Tong Zhu, Zhijun Ning, Edward H. Sargent*, Advanced Materials, 2021, 33, 2103394. 95. Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells. Ziru Huang, Mingyang Wei, Andrew Harald Proppe, Hao Chen, Bin Chen, Yi Hou, Zhijun Ning, Edward H Sargent*, Advanced Functional Materials, 2021, 31(18), 2010572. 94. Molecularly manipulating orientation of hole transporting layers and mitigation of eletrical loss for dopant-free CsPbI2Br solar Cell (Highlight). Xianyuan Jiang, Zhijun Ning*, Science China Chemistry, 2021, 64, 1607-1608.
2020年 93. Solution-processed upconversion photodetectors based on quantum dots, Wenjia Zhou, Yuequn Shang, F. Pelayo Garcia de Arquer, Kaimin Xu, Ruili Wang, Shaobo Luo, Xiongbin Xiao, Xiaoyu Zhou, Ruimin Huang, Edward H. Sargent & Zhijun Ning*, Nature Electronics, 2020, 3, 251-258.
92. Ultra-high open-circuit voltage of tin perovskite solar cells via an eletron transporting layer design, Xianyuan Jiang, Fei Wang, Qi Wei, Hansheng Li, Yuequn Shang, Wenjia Zhou, Cheng Wang, Peihong Cheng, Qi Chen, Liwei Chen & Zhijun Ning*, Nat. Commun.,2020, 11, 1245. 91. Toward high efficiency tin perovskite solar cells: A perspective, Hansheng Li, Qi Wei, Zhijun Ning*, Appl. Phys. Lett., 2020, 117, 060502. 90. Cs0.15FA0.85PbI3/CsxFA1-xPbI3 Core/Shell Heterostructure for Highly Stable and Efficient Perovskite Solar Cells, Zijian Peng, Qi Wei, Hao Chen, Yawen Liu, Fei Wang, Xianyuan Jiang, Weiyan Liu, Wenjia Zhou, Shengjie Ling, Zhijun Ning*, Cell Reports Physical Science, 2020, 1, 1002234. 89. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors, Kaimin Xu, Wenjia Zhou*, Zhijun Ning*, Small, 2020, 16, 2003397. 88. Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells, Hao Chen, Zijian Peng, Kaimin Xu, Qi Wei, Danni Yu, Congcong Han, Hansheng Li & Zhijun Ning*, SCIENCE CHINA Materials, 2020, 2095-8226. 87. High quality silicon: Colloidal quantum dot heterojunction based infrared photodetector, Xionbin Xiao, Kaimin Xu, Ming Yin, Yu Qiu, Wenjia Zhou, Li Zheng*, Xinhong Cheng, Yuehui Yu, and Zhijun Ning*, Appl. Phys. Lett., 2020, 116, 101102. 86. Inverted Si:PbS Colloidal Quantum Dot Heterojunction-based Infrared Photodetector, Kaimin Xu, Xiongbin Xiao, Wenjia Zhou, Xianyuan Jiang, Qi Wei, Hao Chen, Zhuo Deng, Jian Huang, Baile Chen, and Zhijun Ning*, ACS Appl. Mater. Interfaces, 2020, 12, 15414-15421. 85. Theoretical Study of Using Kinetics Strategy to Enhance the Stability of Tin Perovskite, Qi Wei, Youqi Ke*, Zhijun Ning*, Energy Environ. Mater., 2020, doi:10.1002/eem2.12075. 84. Two-dimensional tin perovskite nanoplate for pure red light-emitting diodes, Yuan Liao, Yuequn Shang, Qi Wei, Hao Wang, Zhijun Ning*, J. Phys. D: Appl. Phys., 2020, 53, 414005. 83. A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes, Haoran Wang, Xiwen Gong, Dewei Zhao, Yong-Biao Zhao, Sheng Wang, Jianfeng Zhang, Lingmei Kong, Bin Wei, Rafael Quintero-Bermudez, Oleksandr Voznyy, Yuequn Shang, Zhijun Ning, Yanfa Yan, Edward H. Sargent, Xudong Yang, Joule, 2020, 4, 1977-1987. 82. Low-dimensionality perovskites yield high electroluminescence, Zhenyu Yang*, Chuanjiang Qin*, Zhijun Ning*, Mingjian Yuan*, Jiang Tang*, Liming Ding*, Science Bulletin, 2020, 65, 1057-1060.
2019年 81. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure, Yuequn Shang, Yuan Liao, Qi Wei, Ziyu Wang, Bo Xiang, Youqi Ke, Weimin Liu*, Zhijun Ning*, Science advances, 2019, 5(8): eaaw8072. 80. Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines, Hao Chen, Qi Wei, Makhsud I. Saidaminov, Fei Wang, Andrew Johnston, Yi Hou, Zijian Peng, Kaimin Xu, Wenjia Zhou, Zhenghao Liu, Lu Qiao, Xiao Wang, Siwen Xu, Jiangyu Li, Run Long, Youqi Ke, Edward H. Sargent* and Zhijun Ning*, Adv. Mater., 2019, adma.201903559. 79. Stability improvement under high efficiency—next stage development of perovskite solar cells, Danni Yu, Yue Hu, Jiangjian Shi, Haoying Tang, Wenhao Zhang, Qingbo Meng*, Hongwei Han*, Zhijun Ning*, He Tian, Science China Chemistry, 2019, 62(6): 684-707. 78. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices, Haoran Wang, Xiaoyu Zhang, Qianqian Wu, Fan Cao, Dongwen Yang, Yuequn Shang, Zhijun Ning, Wei Zhang, Weitao Zheng, Yanfa Yan, Stephen V. Kershaw, Lijun Zhang, Andrey L. Rogach* & Xuyong Yang*, Nat. Commun., 2019, 10(1): 665. 77. Emerging highly emissive and stable white emitting “phosphors” based on lead-free inorganic halide perovskites (Highlight), Qi Wei, Zhijun Ning*, Science China Chemistry 2019, 62 (3), 287-288. 76. Bi-inorganic-ligand coordinated colloidal quantum dot ink, Xianyuan Jiang, Hansheng Li, Yuequn Shang, Fei Wang, Hao Chen, Kaimin Xu, Ming Yin, Hefei Liu, Wenjia Zhou, Zhijun Ning*, Chem. Commun., 2019, 55, 9483-9486. 74. Stabilizing the CsSnCl3 Perovskite Lattice by B-Site Substitution for Enhanced Light Emission, Ziyan Wu, Qiqi Zhang, Binghan Li, Zhifang Shi, Kaimin Xu, Yi Chen, Zhijun Ning, Qixi Mi*, Chem. Mater. 2019, 31, 14, 4999-5004. 73. Colloidal-quantum-dot-in-perovskite nanowires, Ruili Wang, Fei Wang, Wenjia Zhou, James Z. Fan, F. Pelayo Garcis de Arquer, Kaimun Xu, Edward H. Sargent, Zhijun Ning*, Infrared Physics & Technology, 2019, 98: 16-22.
2018年 73. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability, Fei Wang, Xianyuan Jiang, Hao Chen, Yuequn Shang, Hefei Liu, Jingle Wei, Wenjia Zhou, Hailong He, Weimin Liu, and Zhijun Ning*, Joule, 2018. 2, 2732-2743. 72. Highly Efficient Inverted Structural Quantum Dot Solar Cells, Ruili Wang, Xun Wu, Kaimin Xu, Wenjia Zhou, Yuequn Shang, Haoying Tang, Hao Chen, and Zhijun Ning*, Adv. Mater., 2018, 30, 1704882. 71. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, Jun Pan , Yuequn Shang, Jun Yin, Michele De Bastiani, Wei Peng, Ibrahim Dursun, Lutfan Sinatra, Ahmed M. El-Zohry, Mohamed N. Hedhili, Abdul-Hamid Emwas, Omar F. Mohammed, Zhijun Ning*, and Osman M. Bakr*, J. Am. Chem. Soc., 2018, 140, 562–565. 70. Quasi-2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light-Emitting Diodes, Yuequn Shang, Gang Li, Weimin Liu, and Zhijun Ning*, Adv. Funct. Mater., 2018, 28, 1801193. 69. Energy Level Tuning of PEDOT:PSS for High Performance Tin-Lead Mixed Perovskite Solar Cells, Haoying Tang, Yuequn Shang, Wenjia Zhou, Zijian Peng, Zhijun Ning*, Sol. RRL, 2018, 1800256. 68. Organic−Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission, Pengfei Fu , Menglin Huang, Yuequn Shang, Na Yu, Hao-Long Zhou , Yue-Biao Zhang , Shiyou Chen , Jinkang Gong, and Zhijun Ning*, ACS applied materials & interfaces, 2018, 10, 34363-34369. 67. Programming Cells for Dynamic Assembly of Inorganic Nano‐Objects with Spatiotemporal Control, Xinyu Wang, Jiahua Pu, Bolin An, Yingfeng Li, Yuequn Shang, Zhijun Ning, Yi Liu, Fang Ba, Jiaming Zhang, Chao Zhong*, Advanced Materials, 2018, 30, 1705968. 66. Ambipolar Graphene–Quantum Dot Phototransistors with CMOS Compatibility, Li Zheng, Wenjia Zhou, Zhijun Ning*, Gang Wang, Xinhong Cheng*, Weida Hu, Wen Zhou, Zhiduo Liu, Siwei Yang, Kaimin Xu, Man Luo, Yuehui Yu,Advanced Optical Materials, 2018, 1800985. 65. Planar core based starburst triphenylamine molecules as hole transporting materials for high-performance perovskite solar cells (Highlight), Qi Wei, Zhijun Ning*, Science China Chemistry, 2018, 62, 5-6. 64. Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells, Dong Liu, Wenjia Zhou, Haoying Tang, Pengfei Fu, Zhijun Ning*, Science China Chemistry, 2018, 61, 1278-1284. 63. Quaternary Two Dimensional Zn-Ag-In-S Nanosheets for Highly Efficient Photocatalytic Hydrogen Generation, Hao Chen, Xiao-Yuan Liu, Shizhuo Wang, Xu Wang, Qi Wei, Xianyuan Jiang, Fei Wang, Kaimin Xu, Jianxi Ke, Qiong Zhang, Qian Gao, Youqi Ke*, Yi-Tao Long* and Zhijun Ning*, Journal of Materials Chemistry A, 2018, 6, 11670-11675 . 62. Improved Efficiency and Stability of Perovskite Solar Cells Induced by C=O Functionalized Hydrophobic Ammonium‐Based Additives, Zhifang Wu, Sonia R. Raga, Emilio J. Juarez-Perez, Xuyang Yao, Yan Jiang, Luis K. Ono, Zhijun Ning, He Tian, Yabing Qi*, Advanced Materials, 2018, 30, 1703670. 61. Peak Force Visible Microscopy for Determination of Exciton Diffusion Length in Organic Photovoltaic Blends, Haomin Wang, Le Wang, Yuequn Shang, Zhijun Ning, Xiaoji Xu*, ChemRxiv, 2018. 60. A Colloidal‐Quantum‐Dot Infrared Photodiode with High Photoconductive Gain, Yicheng Tang, Feng Wu, Fansheng Chen, Yi Zhou, Peng Wang, Mingsheng Long, Wenjia Zhou, Zhijun Ning, Jiawei He, Fan Gong, Zhihong Zhu, Shiqiao Qin, Weida Hu*, Small, 2018, 1803158. 59. Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots, Yicheng Tang, Hehai Fang, Mingsheng Long, Gang Chen, Zhe Zheng, Jin Zhang, Wenjia Zhou, Zhijun Ning, Zhihong Zhu, Ying Feng, Shiqiao Qin, Xiaoshuang Chen, Wei Lu, and Weida Hu*, IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 3801608. 58. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots, Xiao-Yuan Liu, Guozhen Zhang, Hao Chen, Haowen Li, Jun Jiang, Yi-Tao Long, and Zhijun Ning*. Nano Research, 2018, 11, 1379–1388. 57. Multi-functional organic molecules for surface passivation of perovskite, Tingting Zhang, Zhanqi Cao, Yuequn Shang, Chao Cui, Pengfei Fu, Xianyuan Jiang, Fei Wang, Kaimin Xu, Dongguang Yin*, Dahui Qu,*, Zhijun Ning*.J. Photochem. & Photobio, A: Chem., 2018, 355, 42-47.
2017年 56. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance, Yuqin Liao, Hefei Liu, Wenjia Zhou, Dongwen Yang, Yuequn Shang, Zhifang Shi, Binghan Li, Xianyuan Jiang, Lijun Zhang*, Li Na Quan, Rafael Quintero-Bermudez, Brandon R. Sutherland, Qixi Mi, Edward H. Sargent, and Zhijun Ning*, J. Am. Chem. Soc., 2017, 139, 6693–6699. 55. 0D–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation, Xiao-Yuan Liu, Hao Chen, Ruili Wang, Yuequn Shang, Qiong Zhang, Wei Li, Guozhen Zhang, Juan Su, Cao Thang Dinh, F. Pelayo García de Arquer, Jie Li, Jun Jiang, Qixi Mi, Rui Si, Xiaopeng Li, Yuhan Sun, Yi-Tao Long,* He Tian, Edward H. Sargent, and Zhijun Ning*. Adv. Mater., 2017, 29, 1605646. 54. Symmetrization of the Crystal Lattice of MAPbI3 Boosts the Performance and Stability of Metal–Perovskite Photodiodes, Zhifang Shi, Yi Zhang, Chao Cui, Binghan Li, Wenjia Zhou, Zhijun Ning*, Qixi Mi*. Adv. Mater., 2017, 29, 1701656. 53. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes, Yuequn Shang, Zhijun Ning*.National Science Review, 2017, 4, 170-183. 52. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells, 'Yuqin Liao, Xianyuan Jiang, Wenjia Zhou, Zhifang Shi, Binghan Li, Qixi Mi, Zhijun Ning*,Front. Optoelectron., 2017, 10, 103–110. 51. Perovskite nanocrystals: synthesis, properties and applications, Pengfei Fu, Qingsong Shan, Yuequn Shang, Jizhong Song, Haibo Zeng*, Zhijun Ning*, Jinkang Gong*. Science Bulletin, 2017, 62, 369–380. 50. Optical study on intrinsic exciton states in high-qualityCH3NH3PbBr3single crystals, T. Thu Ha Do, A. Granados del Águila, Chao Cui, Jun Xing, Zhijun Ning*, and Qihua Xiong*, Phys. Rev. B, 2017, 96, 075308. 49. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells, Xiaoyong Liang, Sai Bai, Xin Wang, Xingliang Dai, Feng Gao, Baoquan Sun, Zhijun Ning, Zhizhen Ye, and Yizheng Jin*. Chem. Soc. Rev., 2017, 46, 1730-1759. 48. High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer, Fan Cao, Haoran Wang, Piaoyang Shen, Xiaomin Li, Yanqiong Zheng, Yuequn Shang, Jianhua Zhang, Zhijun Ning and Xuyong Yang, Adv. Funct. Mater., 2017, 27, 201704278. 47. A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction, Dong Wei, Jun Ji, Dandan Song, Meicheng Li, Peng Cui, Yaoyao Li, Joseph Michel Mbengue, Wenjia Zhou, Zhijun Ning and Nam-Gyu Park. J. Mater. Chem. A, 2017, 5, 1406-1414.
2016年 46. Colloidal quantum dot ligand engineering for high performance solar cells. Ruili Wang, Yuequn Shang, Pongsakorn Kanjanaboos, Wenjia Zhou, Zhijun Ning*, and Edward H. Sargent*, Energy Environ. Sci., 2016, 9, 1130-1143. 45. Highly efficient quantum dot near-infrared light-emitting diodes. Xiwen Gong, ZhenyuYang, Grant Walters, Riccardo Comin, Zhijun Ning, Eric Beauregard, Valerio Adinolfi, Oleksandr Voznyy, and Edward H. Sargent*, Nat. Photonics, 2016, 10, 253–257. 44. Plasmon resonance scattering at perovskite CH3NH3PbI3 coated single gold nanoparticles: evidence for electron transfer, Duo Xu , Dong Liu , Tao Xie , Yue Cao , Jun-Gang Wang , Zhijun Ning , Yi-Tao Long and He Tian, Chem. Commun., 2016, 52, 9933-9936.
2015年 43. Quantum-dot-in-perovskite solids. Zhijun Ning, Xiwen Gong, Riccardo Comin, Grant Walters, Fengjia Fan, Oleksandr Voznyy, Emre Yassitepe, Andrei Buin, Sjoerd Hoogland, Edward H. Sargent, Nature, 2015, 523, 324-328. 42. Colloidal Quantum Dot Solar Cells. Graham H. Carey, Ahmed L. Abdelhady, Zhijun Ning, Susanna M. Thon, Osman M. Bakr, and Edward H. Sargent, Chemical Reviews, 2015, 115, 12732–12763. 41. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. Zhenyu Yang, Alyf Janmohamed, Xinzheng Lan, F. Pelayo García de Arquer, Oleksandr Voznyy, Emre Yassitepe, Gi-Hwan Kim, Zhijun Ning, Xiwen Gong, Riccardo Comin, and Edward H. Sargent*, Nano Lett., 2015, 15, 7539–7543. 40. Perovskite Thin Films via Atomic Layer Deposition. Brandon R. Sutherland, Sjoerd Hoogland, Michael M. Adachi, Pongsakorn Kanjanaboos, Chris T.O. Wong, Jeffrey J. McDowell, Jixian Xu, Oleksandr Voznyy, Zhijun Ning, Arjan J. Houtepen, and Edward H. Sargent*,Adv. Mater., 2015, 27, 53–58. 39. Hybrid Tandem Solar Cells With Depleted-Heterojunction Quantum Dot and Polymer Bulk Heterojunction Subcells. Taesoo Kim, Yangqin Gao, Hanlin Hu, Buyi Yan, Zhijun Ning, Lethy Krishnan Jagadamma, Kui Zhao, Ahmad R. Kirmani, Jessica Eid, Michael M. Adachi, Edward H. Sargent, Pierre M. Beaujuge, Aram Amassian, Nano Energy, 2015, 17, 196–205.
Before 2015年 38. Air-stable n-type colloidal quantum dot solids. Zhijun Ning, Oleksandr Voznyy, Jun Pan, Sjoerd Hoogland, Valerio Adinolfi, Jixian Xu, Min Li, Ahmad R. Kirmani, Jon Paul Sun, James Minor, Kyle W. Kemp, Haopeng Dong, Lisa Rollny, André Labelle, Graham Carey, Brandon Sutherland, Ian Hill, Aram Amassian, Huan Liu, Jiang Tang, Osman M. Bakr & Edward H. Sargent*, Nat. Mater., 2014, 13, 822–828. 37. Solar cells based on inks of n-type colloidal quantum dots. Zhijun Ning, Haopeng Dong, Qiong Zhang, Oleksandr Voznyy, and Edward H. Sargent*, ACS Nano, 2014, 8, 10321–10327. 36. Simultaneous Multiple Wavelength Upconversion in a Core–Shell Nanoparticle for Enhanced Near Infrared Light Harvesting in a Dye-Sensitized Solar Cell. Chunze Yuan, Guanying Chen, Lin Li, Jossana A. Damasco, Zhijun Ning, Hui Xing , Tianmu Zhang, Licheng Sun, Hao Zeng , Alexander N. Cartwright, Paras N. Prasad, Hans Ågren, ACS Appl. Mater. Interfaces, 2014, 6, 18018-18025. 35. Doping Control Via Molecularly Engineered Surface Ligand Coordination. Mingjian Yuan, David Zhitomirsky, Valerio Adinolfi, Oleksandr Voznyy, Kyle W Kemp, Zhijun Ning, Xinzheng Lan, Jixian Xu, Jin Young Kim, Haopeng Dong, Edward H Sargent*, Adv. Mater., 2013, 25, 5586–5592. 34. Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells. Xinzheng Lan, Jing Bai, Silvia Masala, Susanna M Thon, Yuan Ren, Illan J Kramer, Sjoerd Hoogland, Arash Simchi, Ghada I Koleilat, Daniel Paz-Soldan, Zhijun Ning, André J Labelle, Jin Young Kim, Ghassan Jabbour, Edward H Sargent*, Adv. Mater., 2013, 25, 1769–1773. 33. Graded doping for enhanced colloidal quantum dot photovoltaics. Zhijun Ning, David Zhitomirsky, Valerio Adinolfi, Brandon Sutherland, Jixian Xu, Oleksandr Voznyy, Pouya Maraghechi, Xinzheng Lan, Sjoerd Hoogland, Yuan Ren and Edward H. Sargent*, Adv. Mater., 2013, 25, 1719–1723. 32. The donor–supply electrode enhances performance in colloidal quantum dot solar cells. Pouya Maraghechi, André J Labelle, Ahmad R Kirmani, Xinzheng Lan, Michael M Adachi, Susanna M Thon, Sjoerd Hoogland, Anna Lee, Zhijun Ning, Armin Fischer, Aram Amassian, Edward H Sargent*, ACS nano, 2013, 7, 6111–6116. 31. Observation of Bunched Blinking from Individual CdSe/CdS and CdSe/ZnS Colloidal Quantum Dots. Haiyan Qin, Xiangjun Shang, Zhijun Ning, Tao Fu, Zhichuan. Niu, Hjalmar Brismar, Hans Ågren, and Ying Fu, J. Phys. Chem. C, 2012, 116, 12786-12790. 30. Systematic optimization of quantum junction colloidal quantum dot solar cells. Huan Liu, David Zhitomirsky, Sjoerd Hoogland, Jiang Tang, Illan J Kramer, Zhijun Ning, Edward H Sargent, App. Phys. Lett., 2012, 101, 151112. 29. Performance improvement of dye-sensitizing solar cell by semi-rigid triarylamine-based donors. Chengyou Wang, Jing Li, Shengyun Cai, Zhijun Ning, Dongmei Zhao, Qiong Zhang, Jian-Hua Su, Dyes and Pigments, 2012, 94, 40-48. 28. Photovoltaic performance of solid-state DSSCs sensitized with organic isophorone dyes: Effect of dye-loaded amount and dipole moment. Bo Liu, Xiaoyan Li, Miaoyin Liu, Zhijun Ning, Qiong Zhang, Chen Li, Klaus Müllen, Weihong Zhu,Dyes and Pigments, 2012, 94, 23-27. 27. Stable Dyes Containing Double Acceptors without COOH as Anchors for Highly Efficient Dye-Sensitized Solar Cells. Jiangyi Mao, Nannan He, Zhijun Ning, Qiong Zhang, Fuling Guo, Long Chen, Wenjun Wu, Jianli Hua, He Tian, Angew. Chem. Int. Ed., 2012, 51, 9873. 26. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation. Zhijun Ning, Yuan Ren, Sjoerd Hoogland, Oleksandr Voznyy, Larissa Levina, Philipp Stadler, Xinzheng Lan, David Zhitomirsky and Edward H. Sargent*, Adv. Mater., 2012, 24, 6295–6299. 25. Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. Chunze Yuan, Guanying Chen*, Paras N Prasad, Tymish Y Ohulchanskyy, Zhijun Ning*, Haining Tian, Licheng Sun, Hans Ågren*, J. Mater. Chem., 2012, 22, 16709–16713. 24. Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. Zhijun Ning, Chunze Yuan, Haining Tian, Ying Fu, Lin Li, Licheng Sun, Hans Ågren*, J. Mater. Chem., 2012, 22, 6032–6037. 23. Hybrid passivated colloidal quantum dot solids. Alexander H. Ip, Susanna M. Thon, Sjoerd Hoogland, Oleksandr Voznyy, David Zhitomirsky, Ratan Debnath, Larissa Levina, Lisa R. Rollny, Graham H. Carey, Armin Fischer, Kyle W. Kemp, Illan J. Kramer, Zhijun Ning, Andre J. Labelle, Kang Wei Chou, Aram Amassian & Edward H. Sargent*, Nat. Nanotechnol., 2012, 7, 577–582. 22. A charge-orbital balance picture of doping in colloidal quantum dot solids. Oleksandr Voznyy, David Zhitomirsky, Philipp Stadler, Zhijun Ning, Sjoerd Hoogland, Edward H Sargent*, ACS Nano, 2012, 6, 8448–8455. 21. Effects of K+ and Na+ ions on the fluorescence of colloidal CdSe/CdS and CdSe/ZnS quantum dots. Mátyás Molnár, Zhijun Ning*, Yun Chen, Peter Friberg, Lianming Gan, Ying Fu*, Sens. Actuators, B 2011, 155, 823–830. 20. Exciton Polariton Contribution to the Stokes Shift in Colloidal Quantum Dots. Z.-H. Chen, S. Hellström, Zhijun Ning, et. al.J. Phys. Chem. C 2011, 115, 5286. 19. Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Zhijun Ning, Haining Tian, Chunze Yuan, Ying Fu, Haiyan Qin, Licheng Sun*, Hans Ågren*, Chem. Commun. 2011, 47, 1536–1538. 18. Pure Organic Redox Couple for Quantum‐Dot‐Sensitized Solar Cells. Zhijun Ning, Haining Tian, Chunze Yuan, Ying Fu, Licheng Sun*, Hans Ågren*, Chem. Eur. J. 2011, 17, 6330–6333. 17. Role of surface ligands in optical properties of colloidal CdSe/CdS quantum dots. Zhijun Ning, Matyas Molnár, Yun Chen, Peter Friberg, Liming Gan, Hans Ågren, Ying Fu*, Phys. Chem. Chem. Phys. 2011, 13, 5848–5854. 16. Quantum Rod‐Sensitized Solar Cells. Zhijun Ning, Chunze Yuan, Haining Tian, Peter Hedström, Licheng Sun*, Hans Ågren*, ChemSusChem 2011, 4, 1741–1744. 15. Wave-function engineering of CdSe/CdS Core/Shell quantum dots for enhanced electron transfer to a TiO2 Substrate. Zhijun Ning, Haining Tian, Haiyan Qin, Qiong Zhang, Hans Ågren, Licheng Sun, Ying Fu*, J. Phys. Chem. C 2010, 114, 15184–15189. 14. Improvement of dye-sensitized solar cells: what we know and what we need to know. Zhijun Ning, Ying Fu, He Tian, Energy Environ. Sci. 2010, 3, 1170–1181. 13. Photovoltage Improvement for Dye-Sensitized Solar Cells via Cone-Shaped Structural Design. Zhijun Ning, Qiong Zhang, Hongcui Pei, Jiangfeng Luan, Changgui Lu, Yiping Cui, He Tian,J. Phys. Chem. C 2009, 113, 10307-11313. 12. ‘Click’ Synthesis of Starburst Triphenylamine as Potential Emitting Material. Qiong Zhang, Zhijun Ning, He Tian, Dyes and Pigments 2009, 81, 80-84. 11. Dye-sensitized solar cells based on donor-acceptor organic sensitizers with maleimide as electron acceptor. Qiong Zhang, Zhijun Ning, Hongcui Pei, Wenjun Wu, Frontiers of Chemistry in China 2009, 4, 269-277. 10. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in Donor-Acceptor system. Bo Liu, Weihong Zhu, Qiong Zhang, Wenjun Wu, Min Xu, Zhijun Ning, Yongshu Xie, He Tian,Chem. Commun, 2009, 1766-1768. 9. Dye-sensitized solar cells based on donor-acceptor organic sensitizers with maleimide as electron acceptor. Qiong Zhang, Zhijun Ning, Hongcui Pei, Wenjun Wu,Frontiers of Chemistry in China, 2009, 4, 269-277. 8. Triarylamine: a promising core unit for efficient photovoltaic materials. Zhijun Ning, He Tian, Chem. Commun., 2009, 5483-5495. 7. Novel Iridium Complex with Carboxyl Pyridyl Ligand for Dye-Sensitized Solar Cells: High Fluorescence Intensity, High Electron InjectionEfficiency? Zhijun Ning, Qiong Zhang, Wenjun Wu, He Tian, J. Organomet. Chem., 2009, 694, 2705-2711. 6. Starburst triarylamine based dyes for efficient dye-sensitized solar cells. Zhijun Ning, Qiong Zhang, Wenjun Wu, Hongcui Pei, Bo Liu, He Tian, J. Org. Chem., 2008. 73, 3791-3797. 5. Photochromic Spiropyran Dendrimers: “Click”Syntheses, Characterization, and Optical Properties. Qiong Zhang, Zhijun Ning, Yongli Yan, Shixiong Qian, He Tian, Macromol. Rapid Commun., 2008, 29, 193-201. 4. Bisindolylmaleimide derivatives as non-doped red organic light-emitting materials. Zhijun Ning, Yechun Zhou, Qiong Zhang, Dongge Ma, Junji Zhang, He Tian,J. Photochem. Photobio. A: Chemistry, 2007, 192, 8-16. 3. Soluble porphyrin–bisindolylmaleimides dyad and pentamer as saturated red luminescent materials. Yang Li, Lifeng Cao, Zhijun Ning, Zhe Huang, Yong Cao, He Tian. Tetrahedron Lett., 2007, 48, 975-978. 2. Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitter for organic light-emitting diodes and Cl2 gas chemodosimeter. Zhijun Ning, Zhao Chen, Qiong Zhang, Yongli Yan, Shixiong Qian, Yong Cao, He Tian,Adv. Funct. Mater., 2007, 17, 3799-3807. 1. A soluble 5-carbazolium-8-hydroxyquinoline Al(III) complex as a dipolar luminescent material. Juntao Xie, Zhijun Ning, He Tian, Tetrahedron Lett., 2005, 46, 8559-8562. |